
Theorem relating to the development of a reflection coefficient in terms of a small parameter

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 357

(http://iopscience.iop.org/0305-4470/14/2/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 16:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A:  Math. Gen. 14 (1981) 357-367. Printed in Great Britain 

Theorem relating to the development of a reflection 
coefficient in terms of a small parameter 
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Aberystwyth, Dyfed, SY23 3BZ, UK 

Received 20 June 1980 

Abstract. The refection coefficient R produced by an isotropic medium is expressed in 
terms of the reflection coefficient r produced by a second isotropic medium known as the 
'carrier' medium. At  the same time, the field W in the first medium is expressed in terms of 
an integral equation involving the field w in the carrier medium. The expansion of W and R 
as power series in terms of a parameter a gives rise to an interesting theorem: the coefficient 
of a"" in R contains a large number of multiple integrals of order n + 1, and the values of 
these integrals are mostly equal in pairs. This pairing of equal contributions to R is a kind of 
reciprocity between pairs of perturbation terms of order an+', the two contributions in each 
pair being produced by n + 1 re-radiative processes taking place in differing arrangements. 

1. Survey of the problem 

In Darwin's work on optics (1924), and Hartree's investigations on ionospheric 
electromagnetic wave propagation (1929), the following basic assumptions are made: 
(i) The incident electromagnetic wave propagates undisturbed throughout the medium, 
as if in free space (this latter free-space medium being designated as the 'carrier' 
medium); (ii) the individual electrons (bound in Darwin's work, but free in the 
ionosphere) in the medium, oscillate in sympathy with the electromagnetic field at that 
point, and through their acceleration re-radiate fresh electromagnetic waves. In this 
connection, it must be stressed that it is the total field that acts on the electrons, not 
merely the incident field. Hartree derived the propagation equations for the electro- 
magnetic field in an ionised medium using Hertz oscillators to describe the sources of 
the fresh electromagnetic waves, these additional waves being responsible for the 
reflected wave from the medium. White (1942) exploited these ideas in his monograph, 
while Heading (1953) gave an extended analysis of this theory as applied to plane- 
stratified media, deriving at the same time some approximate formulae for the field, and 
for the reflection and transmission coefficients by means of these basic ideas. Westcott, 
in a series of papers (1962a, b, c, d, 1964), has used these formulae in both isotropic and 
anisotropic models to show by theoretical and numerical calculations the part that every 
elementary slice of the medium plays in the reflection process. Heading (1963) 
produced some general formulae with assumption (i) modified to allow part of the 
carrier medium to be homogeneous and distinct from free space. 

When the medium differs only slightly from free space, the reflection coefficient is 
susceptible to development as a power series in terms of a small parameter cy. Only the 
coefficients of cy and c y 2  have been considered by Heading (1953, 1963, 1975), the 
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coefficients involving integrals of the field throughout the medium. For example, the 
coefficient of a 2  contains two double integrals, their integrands involving the field 
throughout the medium together with the two free-space carrier waveforms, one 
upgoing and one downgoing. Only later did the author realise that these two distinct 
double integrals are equal in value, though this result was not published, and is not 
included on pages 113-117 of his text (1975). 

The question arises as to whether there are further equalities to be discovered when 
the coefficients of cy3, cy4, . . . , are investigated. Moreover, there is the further question 
as to whether this result for the coefficient of a 2  (and for any others to be discovered in 
the coefficients of a3,  cr4, . . .) depends on the fact that free-space wave forms are used to 
'carry' the various contributions that make up the total field at any point 2.  

In the present paper, a complete generalisation is made for the propagation of a field 
W in a medium governed by a general second-order differential equation with variable 
coefficients, the carrier field being governed by a second general second-order 
differential equation. Free space lies above and below an inhomogeneous medium 
confined to the range a s z S b. An integral equation of the second kind is derived that 
expresses W in terms of w1 and w2 (that is, two special independent solutions of the 
carrier equation). Additionally, reflection and transmission coefficients are derived 
that express the reflection coefficient K and the transmission coefficient T for oblique 
incidence as an integral of W throughout the medium. 

The equation for W differs from that for w by means of a parameter cy. The 
development of W and R in terms of (Y is expressed as a series of perturbation effects, 
the perturbation field W, of order a" giving rise to the following perturbation field 
Wn+1 of order a"+'. Each perturbation field of order CY" contains more and more 
multiple integrals of order n ; there are, in fact, 2" of them. In 4 5 a theorem is proved 
whereby the 2" contributions to R from W,, each being of order (Y "I"', can be separated 
out into equal pairs when n is odd. When n is even, the same result is true, apart from 
2"" special contributions that are excluded. The mathematical nature of these equali- 
ties is investigated and a physical interpretation of the fields involved is displayed in a 
diagram showing the perturbation fields and the equal contributions to R, up to the 
order a6 .  

The theorem and the diagram represent the complete generalisation of the simplest 
case when n = 1 and when free space is used as the carrier medium. 

2. The equations under consideration 

The propagation of electromagnetic waves in a plane-stratified isotropic plasma is 
governed by two independent differential equations of the second order, 

d2 W 
- - + k 2 ( C 2 - p ( t ) )  W = 0 ,  
dz2 

d2 W 2n' d W 
dz2 n dz 

- + k 2 ( C 2 - p ( z ) )  w = 0 ,  

where n = 1 -- p ,  C = cos 6, and a prime denotes differentiation with respect to z ; see 
Budden (1961). The former relates to the electric field conponent perpendicular to the 
plane of incidence, and the latter to the magnetic field component perpendicular to the 
plane of incidence. Here p ( z )  =X/(l -iZ) in standard ionospheric notation. 
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For z < a, 
So that our investigations shall be as general as possible, we shall write either 

(1) 

> b, we shall take p = 0, referring to free space. 

equation in the form 

W ’ + F ( z )  W’+ k 2 G ( z )  W = 0, 

where F ( z )  = 0, G ( z )  = C 2  outside the plasma region a < z < b. 
Whereas Hartree (1929) and Heading (1963) allowed waves to be ‘carried’ ‘by 

free-space waves, the object of the present analysis is to allow solutions of equation (1) 
to be ‘carried’ by solutions of the independent equation 

w”+f(z)w’+k2g(z)w = 0,  (2) 
where f ( z )  = 0, g ( z )  = C 2  outside the range a < t < b. 

A wide range of integral relationships involving W and w has recently been given by 
Heading (1980); here we focus attention on a special integral expressed in the form of 
an integral equation, and resembling the method of variation of parameters. 

Multiply equation (1) by w, equation (2) by W, subtract and rearrange, giving 

( W  W‘ - W’ W)’+ k(F +f)(w W’-  W’ W )  + i (F  - f ) ( w  W)‘ t k2(G - g ) w  W = 0. 

The integrating factor is 

yielding 

[J(wW’- W’ W)]‘+ [kJ(F - f ) w  W]’ = [+J(F-f)]’wW - k2j(G - g ) w  W. 

Integration between any two suitable limits finally gives 

[J(wW’- w’ W )  +kl (F- f )wW] = 1 {[kJ(F - f ) ] ’ -  k 2 J ( G  - g)}wW dy. (3) 

3. The integral equation 

We now consider two solutions W I  and w z  o€ equation (2), such that w1 represents a 
solution incident from above ( z  > b ) ,  and w2 a solution incident from below (2 < a ) .  In 
terms of the respective reflection and transmission coefficients r ’ ,  t’, r, t (a prime 
attached to these symbols denoting that incidence is from above), we have 

(4) 

(5  1 
t‘ exp(ikCz) t w 1  -+ exp(ikCz) + r’ exp(-ikCz), 

exp(-ikCz) + r exp(ikCz) t wz+ t exp(-ikCz). 

Write J ( a )  = 1, J ( b )  = Jb. Moreover, let W denote that solution of equation (1) that is 
incident from below, namely 

exp(-ikCz) +R exp(ikCz) t W -+ T exp(-ikCz). 

We now place w equal to w1 and w2 in equation (3), evaluating this from a to z and 
from z to b in both cases. We obtain 

J ( w l  W’-  w :  W )  +iJ(F-f)wl W + 2ikCt’ = [‘ 4wlW dy, (6) 
J a  
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J( ~2 W’ - w ; W) + $J(F - f )  ~2 W = - 4 ~2 W d y ,  Jzb 
J ( w 1  W’- w;W)+$J(F-f )wlW+Jb2ikCT = - 

J ( w 2  W’- w; W)+$J((F- f jw2  W -2ikCR +2ikCr = 

4 w l W  dy, Jzb 
4 w 2  W dy, 

Jaz 

where 4 denotes &J(F- f ) ] ’ -  k 2 J ( G  - g ) ,  
Subtracting equation (9) from equation (7), we obtain the reflection formula 

Subtracting equation (6) from equation (8), we obtain the transmission formula 

These are complete generalisations of formulae given by Heading (1963). 

tions for W and W’. On account of linearity, W‘ may be eliminated, giving 
Now equations (6) and (7)  represent two simultaneous differential-integral equa- 

where D = J ( w l w ;  - W Z W : ) .  This is an integral equation for W of the second kind; its 
solution, when substituted into the reflection and transmission formulae (10) and (ll), 
yields R and T respectively. In a sense these formulae are identities, since R and T are 
known once W is known, without the necessity of carrying out the integrals. On the 
other hand, progress in the calculation of R can be made without knowing W exactly. 

In order to cast equation (12) into a form suitable for the application of the general 
theorem shortly to be proved, write 

-2ikCt’wl/D = u l ,  -2ikCt’w2/D = u2,  4D/(2ikCt’)2 = Y, 

reducing equations (10) and (12) to 

R = r + t ’  Yu2Wdz, 

~ = u ~ + u ~ / ~ ~  Y u l W d y + u l  Jz y u 2 w d y .  
b 

Jab 

Here 

For the electric field component, F = f =  0, J = 1, and we write G = g + a Q ( z ) ,  
a Q ( z )  being a perturbation effect on the plasma governing the carrier wave. Since the 
equation is in normal form, the Wronskian w l w b  - w 2 w i  is constant, having the value 
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-2ikCt' below the plasma and -2ikCt above, proving incidentally that t = t'. Then 

For the magnetic field component, F = P ' / ( l  - P ) , f = p ' / ( l  - p ) ,  using capital 
symbols to refer to equation (1). This gives 

J = [(l -P)(l - p ) ] - l l 2 ,  

In this expression, although a factor a has been removed, it must be noted that Q 

(through the function P )  still exists in the ratio that remains. The theorem to be proved 
relates to the explicit Q that has been removed as a factor. 

4. Theorem 

If 
b 

R = r + a t '  la SuzW dz, 

W = U Z  + Q U ~  SU 1 W dy + (YU 1 SUZ W dy ; 16 Izb 
if W is developed as a power series in Q by successive substitution, yielding 2" multiple 
integrals of order n for the coefficient of a"  ; and if R is then developed as a power series 
in (Y yielding 2" multiple integrals of order n + 1 for the coefficient of ant* ,  then in the 
development of R :  when n is even there are 2"-' - 2'"-' pairs of equal multiple 
integrals; when n is odd there are 2"-' pairs of equal multiple integrals. This generalises 
the case of the coefficient of a' in R,  for which the two double integrals are equal, giving 

b b 

R = r + d  Sui d z + 2 a 2 t '  S ( z ) u : ( z )  dzIa2 S ( y ) u ~ ( y ) u ~ ( y )  dy. 

When the author (1975) wrote pages 115-6 of his text, he did not realise the equality of 
the two double integrals, so both were evaluated separately in the example given. In 
that investigation the carrier wave propagated in free space, with r = 0, t' = 1, w1= 
exp(ikz), wz = exp(-,ikz). The present theorem represents a complete generalisation 
(i) of the carrier waves involved, (ii) of the order of the multiple integrals. 

5. Proof of the theorem 

To see clearly the nature of the multiple integrals involved, introduce the two operators 
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both operating on functions of y .  Then 

W(2) = U~(z)+a9w(y)+a9W(y)# 
The development in terms of a implied in the theorem is of the form 

w = CYflWn, 
f l = O  

so 

W O  = U21 

w1= 9 WO + 9 W O  = (9 + 9) uz, 

wz = 9 w1+ 9 w1= (99 + 99 + 99 + 9 9 ) u z  = 1 ( 9 9 ) u z ,  
4 

where E4 (99) denotes that all four permutations 99, 99,229 and 99 are included; 
the variable symbol used in the limits of integration in any particular operator is that 
appearing in the integrand immediately preceding. 

Then in R we substitute the form 

consisting of 2" permutations, each being formed by n entries, either 9 or 9. Hence, 
formally, the development of R is 

Progress is first made by considering the coefficient of t 'a2,  namely when n = 1: 
b 

~ a b S ( z ) ~ ~ 2 ( z ) d 2 ( u 2 ( z )  ~ a z S ( Y ) u l ( Y ) r r l ( Y ) d Y  +U1(Z) I, S(Y)u2(Y)uz(Y) d Y ) .  

We assert that these two double integrals are equal. In simpler notation, the structure 
of the integrands allows us to write the integrals in the forms 

j ab . f ( z )  dz 1: g ( y )  dy and lab g ( z )  dz l Z b f ( y )  dy,  (16) 

where, for the purpose of this section, the symbols f ,  g ,  F, G are distinct from those 
appearing in equations (1) and (2). 

5.1. Proof (i) 

The basic idea may be found, for example, on page 6 of the text by Tricomi (1957). The 
left-hand integral (16) is 

j a b [ ; f ( 2 ) g ( Y )  dy dz, 

the domain of integration being the triangle with vertices 
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The reversal of the order of integration (with z integrated first instead of y )  immediately 
produces the equality. 

5.2. Proof ( i i )  

Let F ( z ) ,  G ( z j  denote indefinite integrals of f(z) and g ( z )  respectively. Then the 
left-hand side of equation (16) is 

fabf(z) dz (G(z ) -G(a ) )  

b 

= [F(z) (G(z)  - G(a))l:- f F ( z ) g ( z )  dz (by parts) 
a 

= RHS of equation (16). (17) 

We now seek to ascertain whether any similar results apply amongst the 2” multiple 
integrals of order n + 1 appearing in the coefficient of t’a n + l ,  namely amongst 

jab S ( z ) u 2 ( z )  dz 1 (99. . .)uz. 
2“ 

Equality exists between any two multiple integrals when the order of integration in one 
of them is completely reversed. The proof is by induction, since the result is valid when 
n = 1. 

The result being valid for double integrals, let an integral of order N be the 
highest-order integral for which the result is valid, namely 

On the left-hand side, the limits of integration (a as the lower limit, b as the upper limit) 
correspond to an arbitrary permutation. On the right-hand side, the integrand is the 
reverse of that in equation (18); the limits from a to b still stand, on the left; the 
remaining integral signs are reversed, such that if in equation (1 8) b is the upper limit (or 
a the lower limit) in the Mth integral of the sequence ( M  # I), then a is the lower limit 
(or b the upper limit) in the ( N  - M  + 2)th integral in equation (19). 

Replace j ( u )  by j ( u )  j,” I ( t )  d t  in (18) ,  thereby increasing the order of the multiple 
integrals (18) and (19) by one. Then equation (19) becomes 
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Denote the function in square brackets by L ( z ) .  Thus equation (20) equals 

jab L ( z )  dz Izb l ( t )  dt  

b 

= ja l ( z )  dz laz L( t )  dt 

=lab l ( z )  dz [:.i(t! di [ tbh i i )  dy lay. . . l U b f ( u )  du, 

using (1 7) 

the result now being valid for multiple integrals of order N + 1. There can therefore be 
no largest integer N, implying the identity of equations (18) and (19) for all N. 

We shall define integral (19) to be the dual of integral (18). Then the dual of any 
individual integral 

where (92. . .2P) denotes any permutation of the operators B and 9 amongst the n 
positions, is 

Here, the second permutation is obtained from the first by reversing the symbols, and 
changing P to 2 and 2 to 9, namely 9 (or 2 )  in the rth position is replaced by 22 (or P) 
in the (n  - r + 1)th position. Clearly the integrands have been reversed in this process, 
and the limits changed in exactly the same way as in equations (18) and (19). Hence the 
theorem implies the equality of the integrals (21) and (22). 

There may be some self-dual integrals, when the permutations in integrals (21) and 
(22) are identical; for example, when n = 4, 

Iab S ( Z ) U ~ ( Z )  dz(P2P2)u.Z. 

When n is odd, there can be no self-dual integrals, for if the permutation in integral 
(21) contains 9 in the central position (that is, the $(n + 1)th position), its dual contains 
2 in the same position, so the permutations are distinct though the integrals are equal. 
Thus there are 2"/2 2"-' pairs of equal multiple integrals. When n is even, an integral 
is self-dual if B (or 2 )  occurs in the rth position (1 c r s i n ) ,  and 2 (or P) occurs in the 
( n  - r + 1)th position (1 G r S i n ) ,  namely, the first i n  entries in the permutation are 
arbitrary, but the remaining i n  entries are then determined. Thus the number of 
self-dual integrals is 2"", so the number of equal dual pairs is 

+ ( 2 n  - 2n/Z) ~ 2n-1__ 2W21-1 

Table 1 shows the numbers involved: 
These results form the generalisation of the simple result when n = 1. 
No such theorem exists for the development of the transmission coefficient T, which 

from equation (1 1) contains the integral 

lab Sul  W dz. (23) 
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Table 1. 

Number of equal Number of self-dual 
n dual pairs integrals 
~~ 

1 1 
2 1 
3 4 
4 6 
5 16 
6 28 
7 64 
8 120 
9 256 

10 496 

0 
2 
0 
4 
0 
8 
0 

16 
0 

32 

When W is substituted, an integral such as (21) is produced, but with u1 replacing the 
first uz.  If the operators are reversed, no equivalent to (22) exists; that is, a dual exists, 
but it does not form part of the expansion of T, so the theorem on equal pairs is no 
longer applicable. 

For if the integral (23) terminates with 9 u 2 ,  then its dual in the sense of expression 
(19) would commence with the integrand 

U: la= U 1  * * * , 

U 2  la= U l U 2  * * * ,  

But since u1 must precede the first integral, no possibility exists for this dual to exist in 
the development of T. 

If the integral (23) terminates with P u z ,  namely 

its dual in the sense of (19) would commence with 
b 

U l U Z  U . L . .  . 

written so that u1 occurs first. But this is an impossibility, since uz must not precede an 
integral containing the limit b. 

Hence the development of T contains no dual of any integral. Pairs being absent, 
the theorem applies only to the reflection coefficient. 

6 .  Physical interpretation 

If (2) is the simplest oblique-incidence free-space equation 

w”+ k2C2w = 0, 

we have r = r’ = 0, t = t’ = 1, with w1 = exp(ikCz), w2 = exp(-ikCz) as the carrier waves; 
u1 and u2 contain the same waveforms. W consists of a series of perturbation fields 
produced by the iterative process, either propagating upwards or downwards obliquely 
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as in free space. In fact, WO = w2, this original incident wave passing right through the 
medium, yielding the first perturbed field W1, consisting of two parts throughout the 
medium, a 8 w 2  being upgoing, and a9w2 downgoing. Each of these in turn gives rise to 
two more perturbation fields of order a', and so on. Finally, every contribution to the 
overall perturbation field of all orders of magnitude gives rise to a contribution to the 
reflection coefficient by substitution into equation (10) or equation (15). 

The same observations may be made when the carrier field is governed by the 
general equation (2). For want of a better nomenclature, we shall still refer to w2 (or u2)  
as upgoing (namely, with the incident wave below), and to w1 (or u l )  as downgoing. 

The field W is illustrated in figure 1, where every straight line segment represents a 
field throughout the medium. W commences with w2 at the bottom. Above this are 
illustrated the two perturbation fields O ( a ) ,  8 w z  marked upgoing and 9 w 2  downgoing. 
At the perturbation level O(a2) ,  four fields are induced, two arising from each O ( a )  
contribution. 

I I w2 

Figure 1. Diagram illustrating the production of various perturbation terms up to order six, 
and the equalities that they produce in the reflection coefficient. 

Any contribution in equation (15), appearing in the integrand from right to left, 
corresponds in the diagram to a line segment derived from a path from bottom to top, a 
8 operator corresponding to upgoing (a segment drawn to the left), and a 9 operator to 
downgoing (a segment drawn to the right). When integrated appropriately throughout 
the medium, every perturbation in W yields a contribution to R. 

The theorem proved in P 5 has shown that equality of contributions to R applies 
throughout every perturbation band (namely, of order a '+I). In the diagram, dual pairs 
exist throughout the 32 perturbation fields of O ( a 5 ) ;  such dual pairs give rise to equal 
contributions in R, the pairs being decided upon by tracing their origin from w2 at the 
base. Thus the permutations 

89889 and 89989 

(marked 9) yield dual integrals and hence equality in R, a property that we may term 
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reciprocity. (These two cases are up-down-up-up-down and up-down-down-up- 
down respectively, or in the diagram, left-right-left-left-right and left-right-right- 
left-right.) Each perturbation band yields such pairs (and also self-dual integrals when 
the order is even). These are marked in the diagram with corresponding numbers 
throughout each perturbation band, the symbol s being used to denote self-dual cases. 

We have indicated the eight self-dual or self-reciprocal cases in the band O(a6).  In 
keeping with our calculations in B 5 ,  all the eight perturbation fields of order a 3  give rise 
to one self-dual field each of the order a6. This feature, and other phenomena relating 
to reciprocity and self-reciprocity throughout the perturbation bands may be traced 
throughout figure 1. 

It is this that represents the complete generalisation of the simplest case exhibited in 
the lowest band. 
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