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Abstract. The reflection coefficient R produced by an isotropic medium is expressed in
terms of the reflection coefficient r produced by a second isotropic medium known as the
‘carrier’ medium. At the same time, the field W in the first medium is expressed in terms of
an integral equation involving the field w in the carrier medium. The expansion of Wand R
as power series in terms of a parameter a gives rise to an interesting theorem: the coefficient
of "*!in R contains a large number of multiple integrals of order n -+ 1, and the values of
these integrals are mostly equal in pairs. This pairing of equal contributions to R is a kind of
reciprocity between pairs of perturbation terms of order a"*!, the two contributions in each
pair being produced by » + 1 re-radiative processes taking place in differing arrangements.

1. Survey of the problem

In Darwin’s work on optics (1924), and Hartree’s investigations on ionospheric
electromagnetic wave propagation (1929), the following basic assumptions are made:
(i) The incident electromagnetic wave propagates undisturbed throughout the medium,
as if in free space (this latter free-space medium being designated as the ‘carrier’
medium); (ii) the individual electrons (bound in Darwin’s work, but free in the
ionosphere) in the medium, oscillate in sympathy with the electromagnetic field at that
point, and through their acceleration re-radiate fresh electromagnetic waves. In this
connection, it must be stressed that it is the total field that acts on the electrons, not
merely the incident field. Hartree derived the propagation equations for the electro-
magnetic field in an ionised medium using Hertz oscillators to describe the sources of
the fresh electromagnetic waves, these additional waves being responsible for the
reflected wave from the medium. White (1942) exploited these ideas in his monograph,
while Heading (1953) gave an extended analysis of this theory as applied to plane-
stratified media, deriving at the same time some approximate formulae for the field, and
for the reflection and transmission coefficients by means of these basic ideas. Westcott,
in a series of papers (1962a, b, ¢, d, 1964), has used these formulae in both isotropic and
anisotropic models to show by theoretical and numerical calculations the part that every
elementary slice of the medium plays in the reflection process. Heading (1963)
produced some general formulae with assumption (i) modified to allow part of the
carrier medium to be homogeneous and distinct from free space.

When the medium differs only slightly from free space, the reflection coefficient is
susceptible to development as a power series in terms of a small parameter «. Only the
coefficients of @ and a” have been considered by Heading (1953, 1963, 1975), the
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coefficients involving integrals of the field throughout the medium. For example, the
coefficient of @ contains two double integrals, their integrands involving the field
throughout the medium together with the two free-space carrier waveforms, one
upgoing and one downgoing. Only later did the author realise that these two distinct
double integrals are equal in value, though this result was not published, and is not
included on pages 113-117 of his text (1975).

The question arises as to whether there are further equalities to be discovered when
the coefficients of a2, a®, . . ., are investigated. Moreover, there is the further question
as to whether this result for the coefficient of & (and for any others to be discovered in
the coefficients of &>, a*, .. ) depends on the fact that free-space wave forms are used to
‘carry’ the various contributions that make up the total field at any point z.

In the present paper, a complete generalisation is made for the propagation of a field
W in a medium governed by a general second-order differential equation with variable
coefficients, the carrier field being governed by a second general second-order
differential equation. Free space lies above and below an inhomogeneous medium
confined to the range a < z < b. An integral equation cf the second kind is derived that
expresses W in terms of w; and w; (that is, two special independent solutions of the
carrier equation). Additionally, reflection and transmission coefficients are derived
that express the reflection coefficient R and the transmission coefficient T for oblique
incidence as an integral of W throughout the medium.

The equation for W differs from that for w by means of a parameter a. The
development of W and R in terms of « is expressed as a series of perturbation effects,
the perturbation field W, of order «” giving rise to the following perturbation field
W,.1 of order «""'. Each perturbation field of order a" contains more and more
multiple integrals of order n; there are, in fact, 2" of them. In § 5 a theorem is proved
whereby the 2" contributions to R from W,, each being of order ™", can be separated
out into equal pairs when # is odd. When # is even, the same result is true, apart from
22 special contributions that are excluded. The mathematical nature of these equali-
ties is investigated and a physical interpretation of the fields involved is displayed in a
diagram showing the perturbation fields and the equal contributions to R, up to the
order a°.

The theorem and the diagram represent the complete generalisation of the simplest
case when # = 1 and when free space is used as the carrier medium.

2. The equations under consideration

The propagation of electromagnetic waves in a plane-stratified isotropic plasma is
governed by two independent differential equations of the second order,

d*w
-d—z—z—%-k2(C2—p(z))W=O,

d*W 2n'dW  ,
albSA S - W =0,
P e k™(C"—p(z))

where n’>=1-p, C =cos 6, and a prime denotes differentiation with respect to z; see
Budden (1961). The former relates to the electric field component perpendicular to the
plane of incidence, and the latter to the magnetic field component perpendicular to the
plane of incidence. Here p(z)=X/(1~1iZ) in standard ionospheric notation.
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For z <a, z > b, we shall take p = 0, referring to free space.
So that our investigations shall be as general as possible, we shall write either
equation in the form

W'+ F(Z)W' +k*G(z2)W =0, (1)

where F(z)=0, G(z) = C? outside the plasma region a <z <b. ,

Whereas Hartree (1929) and Heading (1963) allowed waves to be ‘carried’ by
free-space waves, the object of the present analysis is to allow solutions of equation (1)
to be ‘carried’ by solutions of the independent equation

w"+f(2)w'+k*g(z)w =0, (2)

where f(z)=0, g(z) = C? outside the range a <z <b.

A wide range of integral relationships involving W and w has recently been given by
Heading (1980); here we focus attention on a special integral expressed in the form of
an integral equation, and resembling the method of variation of parameters.

Multiply equation (1) by w, equation (2) by W, subtract and rearrange, giving

(WW' —w' W) +5F + ) (wW = w' W) +5F = iwW) +k*(G - g)wW = 0.

The integrating factor is

J=exp(f YF+hay),

yielding
JWW' —w' W) +[3J(F - HwW]1 =GJ(F - )TwW - k*j(G - g)wW.

Integration between any two suitable limits finally gives

W =w' W)+ 1 (E=pwi)= [ I F -1 = kTG - hwW dy, 3)

3. The integral equation

We now consider two solutions w; and w, of equation (2), such that w; represents a
solution incident from above {z > b), and w, a solution incident from below (z < a). In
terms of the respective reflection and transmission coefficients #/, ¢/, , t (a prime
attached to these symbols denoting that incidence is from above), we have

t' exp(ikCz) « wi—» exp(ikCz) +r' exp(—ikCz), 4)
exp(—ikCz)+r exp(ikCz) « wy > t exp(—ikCz). (5)

Write J(a) =1, J(b)=J,. Moreover, let W denote that solution of equation (1) that is
incident from below, namely

exp(—ikCz)+ R exp(ikCz) « W > T exp(—ikCz).

We now place w equal to w; and w; in equation (3), evaluating this from a to z and
from z to b in both cases. We obtain

](w1W’—w’1W)+%J(F—f)w1W+2ikCt’=‘[ ow W dy, (6)
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b
Twa W' = s W)+ 3 (F = PiwsW == [ w2 W dy, 7)
b
J(w1W’—w’1W)+%J(F—f)w1W+Jb2ikCT=—J dwi W dy, (8)

J(sz’—w’zW)+%](F—f)w2W—2ikCR+2ikCr=J‘ dw,Wdy, (9)

where ¢ denotes 3[J(F — )]~ k*J (G —g).
Subtracting equation (9) from equation (7), we obtain the reflection formula

. b
1
R = r+§—kEJ ew, W dz. (10)

Subtracting equation (6) from equation (8), we obtain the transmission formula

¢ i b
7= 1 _ W dz.
7, 2kCJ, j Swi W dz (1)

These are complete generalisations of formulae given by Heading (1963).
Now equations (6) and (7) represent two simultaneous differential-integral equa-
tions for W and W'. On account of linearity, W' may be eliminated, giving

2ikCt wa(2) + wal(z)

wi(z)

Wi(z)=- D

chi’ 1Wdy +— J’ ow, W dy, (12)

where D = J(w;w> —wawi). Thisis an integral equation for W of the second kind; its
solution, when substituted into the reflection and transmission formulae (10) and (11),
yields R and T respectively. In a sense these formulae are identities, since R and T are
known once W is known, without the necessity of carrying out the integrals. On the
other hand, progress in the calculation of R can be made without knowing W exactly.

In order to cast equation (12) into a form suitable for the application of the general
theorem shortly to be proved, write

—2ikCt'w1/D = u, —2ikCt'w»/D = us, 6D/ (2ikCt) = Y,

reducing equations (10) and (12) to

b
R=r+t’J Yu, W dz, (13)

b

W=u2+u2J‘ YM1Wdy+M1J Yqudy (14)

Here

BI(F =T —k*T(G - ) (wiwh — wawh)

Y= (2ikCt')?

For the electric field component, F=f=0, J =1, and we write G =g+aQ(z),
aQ(z) being a perturbation effect on the plasma governing the carrier wave. Since the
equation is in normal form, the Wronskian w;w5 — w,w} is constant, having the value
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—2ikCt' below the plasma and —2ikCt above, proving incidentally that z =¢. Then

_akQ
T2icy”

For the magnetic field component, F=P'/(1-P),f=p'/(1—p), using capital
symbols to refer to equation (1). This gives

J=[1-P)1-p)]""?,
[1( Q'(1-p)+Qp' >’+ k*Q }
2\[(1-P)1-p)T"?) "[1-P)1-p)]"?

Y=a (Wiws —wawi).

[(1-P)(1-p)]'22ikCY)*

In this expression, although a factor @ has been removed, it must be noted that «
(through the function P) still exists in the ratio that remains. The theorem to be proved
relates to the explicit « that has been removed as a factor.

4, Theorem
If

b
R =r+at’J Su, W dz,

z b
W = u2+au2J. Su;Wdy +au, I Su, Wdy;
if W is developed as a power series in & by successive substitution, yielding 2" multiple
integrals of order n for the coefficient of @ ; and if R is then developed as a power series
in « yielding 2" multiple integrals of order n + 1 for the coefficient of a""!, then in the
development of R: when »n is even there are 2nmtogin-t pairs of equal multiple
integrals; when # is odd there are 2" pairs of equal multiple integrals. This generalises
the case of the coefficient of a” in R, for which the two double integrals are equal, giving

z

b b
R'——.r+at’J Suj dz+2a2t'J S(z)u%(z)dzJ’ S(y)ui(y)ua(y) dy.

When the author (1975) wrote pages 115-6 of his text, he did not realise the equality of
the two double integrals, so both were evaluated separately in the example given. In
that investigation the carrier wave propagated in free space, with r =0, t'=1, w; =
exp(ikz), w, = exp(—ikz). The present theorem represents a complete generalisation
(i) of the carrier waves involved, (ii) of the order of the multiple integrals.

5. Proof of the theorem

To see clearly the nature of the multiple integrals involved, introduce the two operators
b
z

P=w0) [ SOy, 2=uw@ | Gty dy,
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both operating on functions of y. Then

W(z)=ux(z)+aPW(y)+a2W(y).
The development in terms of « implied in the theorem is of the form
w=1Y a"W,
n=0

so
WO = U2,
Wl = @W0+QW() = (@ +Q)u2,
Wz = ‘Of"Wl +QW1 = (@.@ +PY+9P +§29)u2 = Z (.@Q)uz,

4

where 2, (?2) denotes that all four permutations PP, P2, 2P and 29 are included;
the variable symbol used in the limits of integration in any particular operator is that
appearing in the integrand immediately preceding.

Then in R we substitute the form

W, =X (P2..)u,
27‘

consisting of 2" permutations, each being formed by » entries, either ? or 2. Hence,
formally, the development of R is

b
R=r+t' Y a"“J' S(Dux(z)dz ¥ (P2 .. Jus. (15)
n=0 a

on

Progress is first made by considering the coefficient of +'a?, namely when n = 1:

b z b
j s<z>uz<z>dz(uz<z>j SOus(y)ualy) dy + s (2) j S )ualyua(y) dy).

We assert that these two double integrals are equal. In simpler notation, the structure
of the integrands allows us to write the integrals in the forms
b

Lbf(z)dz ng(y)dy and Lb g(z)dz J; Fly)dy, (16)

where, for the purpose of this section, the symbols £, g, F, G are distinct from those
appearing in equations (1) and (2).

5.1. Proof (i)

The basic idea may be found, for example, on page 6 of the text by Tricomi (1957). The
left-hand integral (16) is

Lb sz(z)g(y) dy dz,

the domain of integration being the triangle with vertices

(y, z)=(a, a), (b, b), (a, b).
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The reversal of the order of integration (with z integrated first instead of y) immediately
produces the equality.

5.2. Proof (ii)

Let F(z), G(z) denote indefinite integrals of f(z) and g(z) respectively. Then the
left-hand side of equation (16) is

b
j £(2) d2(G(z) - G(a))

b
=[F(z)(G(z)— G(a))]ﬁ—J F(z)g(z)dz (by parts)

z

= FIG0)- Ot~ )as([ fir)ay+Fb)

= RHSs of equation (16). (17

We now seek to ascertain whether any similar results apply amongst the 2" multiple
integrals of order n + 1 appearing in the coefficient of #'a”*', namely amongst

b
j S(2ux(z)dz Y (P2. . Jus.

an

Equality exists between any two multiple integrals when the order of integration in one
of them is completely reversed. The proof is by induction, since the result is valid when
n=1,

The result being valid for double integrals, let an integral of order N be the
highest-order integral for which the result is valid, namely

b

Lbﬂz)dz ng@myjy

= Lb]'(z) dz fh(y) dy Ly. . Lw g(v)do Jubf(u) du. (19)

b v
J‘ h(v)va jlu)du (18)

On the left-hand side, the limits of integration (a as the lower limit, b as the upper limit)
correspond to an arbitrary permutation. On the right-hand side, the integrand is the
reverse of that in equation (18); the limits from a to b still stand on the left; the
remaining integral signs are reversed, such that if in equation (18) b is the upper limit (or
a the lower limit) in the Mth integral of the sequence (M # 1), then a is the lower limit
(or b the upper limit) in the (N — M +2)th integral in equation (19).

Replace j(u) by j(u) ff [(¢) dt in (18), thereby increasing the order of the multiple
integrals (18) and (19) by one. Then equation (19) becomes

y

Lbj(z) dz Lb {(r) dtJ-th(y)dy L .

o]

Lbﬂu) du

b

h(y) dy Ly . Lbf(u) du) dz J () dt. 20)
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Denote the function in square brackets by L(z). Thus equation (20) equals

b b
I L(z)dz'[ {(¢)dt
b z
=J‘ l(z)dzJ‘ L{z) dt using (17)

= Lb I(z)dz Jazj(t) dtJ:b h(y)dy Ly e Lbf(w du,

the result now being valid for multiple integrals of order N + 1. There can therefore be
no largest integer N, implying the identity of equations (18) and (19) for all N.

We shall define integral (19) to be the dual of integral (18). Then the dual of any
individual integral

b
J S(2)ux(z2)dz(P2...2P)u>, 21)

where (P2 ... 2%) denotes any permutation of the operators ? and 2 amongst the #
positions, is

b
J S ux(z2)dz(2P. .. P2)u,. (22)

Here, the second permutation is obtained from the first by reversing the symbols, and
changing 2 to 2 and 2to ?, namely & (or 2) in the rth position is replaced by 2 (or #)
in the (n — r 4+ 1)th position. Clearly the integrands have been reversed in this process,
and the limits changed in exactly the same way as in equations (18) and (19). Hence the
theorem implies the equality of the integrals (21) and (22).

There may be some self-dual integrals, when the permutations in integrals (21) and
(22) are identical; for example, when n =4,

b
j $(2)ualz) dz (PLPD)us.

When # is odd, there can be no self-dual integrals, for if the permutation in integral
(21) contains @ in the central position (that is, the Yn+Dth position), its dual contains
2 in the same position, so the permutations are distinct though the integrals are equal.
Thus there are 2"/2=2""" pairs of equal multiple integrals. When # is even, an integral
is self-dual if 2 (or 2) occurs in the rth position (1=sr=< in),and 2 (or @) occurs in the
(n —r+ 1)th position (1 <rssn), namely, the first in entries in the permutation are
arbitrary, but the remaining %n entries are then determined. Thus the number of
self-dual integrals is 2"2, 5o the number of equal dual pairs is

lor =2 =pr 121,

Table 1 shows the numbers involved:

These results form the generalisation of the simple result when n = 1.

No such theorem exists for the development of the transmission coefficient T, which
from equation (11) contains the integral

b
J' Su; W dz. (23)
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Table 1.
Number of equal Number of self-dual

n dual pairs integrals

1 1 0

2 1 2

3 4 0

4 6 4

5 16 0

6 28 8

7 64 0

8 120 16

9 256 0
10 496 32

When W is substituted, an integral such as (21) is produced, but with u, replacing the
first u,. If the operators are reversed, no equivalent to (22) exists; that is, a dual exists,
but it does not form part of the expansion of T, so the theorem on equal pairs is no
longer applicable.

For if the integral (23) terminates with 2u,, then its dual in the sense of expression
(19) would commence with the integrand

z
2
leJ Ui oo,
a

But since u; must precede the first integral, no possibility exists for this dual to exist in
the development of T.
If the integral (23) terminates with Pu,, namely

Ur J Uiz ...,
a
its dual in the sense of (19) would commence with
b
uluzj Us oo
z

written so that u; occurs first. But this is an impossibility, since u, must not precede an
integral containing the limit 5.

Hence the development of T contains no dual of any integral. Pairs being absent,
the theorem applies only to the reflection coefficient.

6. Physical interpretation

If (2) is the simplest oblique-incidence free-space equation
w"'+k*C*w =0,
wehaver=r'=0,¢t=1t=1,with w; = exp(ikCz), w, = exp(—ikCz) as the carrier waves;

u; and u, contain the same waveforms. W consists of a series of perturbation fields
produced by the iterative process, either propagating upwards or downwards obliquely
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as in free space. In fact, W, = w, this original incident wave passing right through the
medium, yielding the first perturbed field W;, consisting of two parts throughout the
medium, aPw; being upgoing, and a2w, downgoing. Each of these in turn gives rise to
two more perturbation fields of order az, and so on. Finally, every contribution to the
overall perturbation field of all orders of magnitude gives rise to a contribution to the
reflection coefficient by substitution into equation (10) or equation (15).

The same observations may be made when the carrier field is governed by the
general equation (2). For want of a better nomenclature, we shall still refer to w,, (or u5)
as upgoing (namely, with the incident wave below), and to w; (or u;) as downgoing.

The field W is illustrated in figure 1, where every straight line segment represents a
field throughout the medium. W commences with w, at the bottom. Above this are
illustrated the two perturbation fields O(«), Pw, marked upgoing and 2w, downgoing.
At the perturbation level O(a %), four fields are induced, two arising from each O(a)
contribution,

b

Figure 1. Diagram illustrating the production of various perturbation terms up to order six,
and the equalities that they produce in the reflection coefficient.

Any contribution in equation (15), appearing in the integrand from right to left,
corresponds in the diagram to a line segment derived from a path from bottom to top, a
& operator corresponding to upgoing (a segment drawn to the left), and a 2 operator to
downgoing (a segment drawn to the right). When integrated appropriately throughout
the medium, every perturbation in W yields a contribution to R.

The theorem proved in § 5 has shown that equality of contributions to R applies
throughout every perturbation band (namely, of order a"*"). In the diagram, dual pairs
exist throughout the 32 perturbation fields of O(a®); such dual pairs give rise to equal
contributions in R, the pairs being decided upon by tracing their origin from w, at the
base. Thus the permutations

PIPP2 and PRAIPI

(marked 9) yield dual integrals and hence equality in R, a property that we may term
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reciprocity. (These two cases are up—down-up-up—down and up-down-down-up-
down respectively, or in the diagram, left-right-left-left-right and left-right-right-
left-right.) Each perturbation band yields such pairs (and also self-dual integrals when
the order is even). These are marked in the diagram with corresponding numbers
throughout each perturbation band, the symbol s being used to denote self-dual cases.

We have indicated the eight self-dual or self-reciprocal cases in the band O(«a 9. In
keeping with our calculations in § 5, all the eight perturbation fields of order a give rise
to one self-dual field each of the order a®. This feature, and other phenomena relating
to reciprocity and self-reciprocity throughout the perturbation bands may be traced
throughout figure 1.

It is this that represents the complete generalisation of the simplest case exhibited in
the lowest band.
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